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The problem of control using the feedback principle is considered, in which the aim is to ensure that a phase point falls within
a terminal set no later than a specified time for any noises acting on the system, which are unknown in advance [1]. A method
for the approximate construction of the set of positional absorption, that is, the set of all initial points for which the problem is
solvable, is proposed. The relations defining the approximate sct of positional absorption are stated. These relations differ from
those proposed in [2] for the problem of approaching the terminal st at a given time. The results of an approximate computation
of the set of positional absorption in the problem of controlling a pendulum in a viscous medium are presented. The paper touches
on the topics considered in [1-16]. © 1997 Elsevier Science Ltd. All rights reserved.

1. FORMULATION OF THE PROBLEM

Suppose that a conflict-control system is given whose behaviour in a time interval [tgy, 6] (o < 6 < )
is described by the equation

x=f(t,x,uv), xlyl=x5, ueP, veQ (1.1)

Here x is the m-dimensional phase vector of the system, u is the control function, v is the noise, and P
and Q are compact sets in R? and RY, respectively.

It is assumed that (1.1) satisfies the standard conditions of game theory (see [1]). We consider the
construction of the set of positional absorption W? consisting of all initial positions (t., x+) € [tg, 0] x
R"™ for which there is a positional strategy U(t, x) ensuring that x(t) € M for all © € [t., 0] and for any
u(t) (the precise formulation of this problem is presented in [1]). The construction of wo in the problem
under consideration is more difficult than the construction of the set of positional absorption in the
problem in which the condition x(8) € M is to be satisfied.

The problem of approaching the target up to a fixed instant of time was studied in {1, 4-8], where, in particular,
various constructions were considered suitable for analysing the general properties of W, Studies with a view to
computations include a justification of the approximation of the differential equation by a difference equation.}
Constructions related to an approximate computation of W° were considered in [9-11].

Below we will stucly problems related to the computational aspects of the construction of W°. In Section
2 we define the stable absorption operator. The construction of the stable absorption operator is a quite
general scheme serving as a basis for finding the positional absorption set WP In Section 3 we present
conditions under which the discrete approximation of W° converges to W° as the discretization
step tends to zero. We will present a relation which can be used to develop an algorithm for the approx-
imate computation of W® for some classes of controlled systems in the plane. Examples are given in
Section 4.

2. THE STABLE ABSORPTION OPERATOR

We assume that all the objects (stable bridges, motions or neighbourhoods of the target M) considered
below are contained in a sufficiently large compact domain D C [y, 8] x R™.

We will consider the definition of a u-stable bridge, that is, the set of positions in which the motion
can be preserved by a suitable choice of the control function u. The function (Hamiltonian)
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H(t,x,l)=max min ([, f(t,x,uv)), leR"
ueP veQ

of system (1.1) is in this definition. Here (/, f) denotes the scalar product of the vectors / and f.
Let Glé= {fe R™.|| f|] = K < =} be a step such that F(¢,x) C G for any (t,x) € D. Here || f | |
n

Here a set '¥ of elements vy is given along with.a map {F;: D — 2%} corresponding to ‘¥ and satisfying
the following conditions.

A.1. For any (t,x, y) € D x '¥ the set F(¢, x) is convex, closed and satisfies F(f,x) C G.

A2 Forany (t,x,])e DxS

?El‘ril’ h,.-v(,_,,(l) = H(t,x,1).

A.3. There is a function ©*(8) (0*(8) 4 0 as & { 0) such that
d(F(t",x"), Fy(t,x )< 0" (| 1" =, +]|x" = x, ]},

for any (z., x.) and (¢*, x*) from D and any D, y € . Here hy(l) = sups.r ¢, f) forany F C R", § =
{le R™ || || = 1} and d(F*, F.) is the Hausdorff distance between sets F* and F. in R".

As examples of families of maps satisfying conditions A.1-A.3 we consider the families {Fy,: (') € V} and
{Gp: 1 e 8} [12-15], where

G(t,x)={f e G (L, fY<sH(t,x1)}, E.,=Co{f(t,x.uv(u)):ue P,

co{f} is the closed convex hull of {f} and V is the set of all functions v(-) P — Q.

Note that for some classes of controlled systems, in particular, for systems with right-hand side of
the form

f@,x,up) =0t x)+ B(t,x)u+ C(t,x)v 2.1)

and with P and Q being polyhedra with a finite number of vertices, one can introduce a family of maps
satisfying A.1~A.3 such that 'V is a finite set. This enables approximate constructjons of W to be realized
at least for second-order systems.

Assuming H C R™, we introduce the following notation: X, (¢*; t., x) is the set of points x* € R”™
reached at ¢ € [t., t*] by a solution x(-) = (x(t)t- < T < ¢*, x(t.) = x. of the differential inclusion x €

Fy(t, x)

M, te(t,,th

M,(H)=
() {MuH, t=r"

X, (it M (H) =(x, e R": X, (¢", 1., x,) " M,(H)  0)
We will give a definition of the stable absorption operator in the problem of approaching the target
M up to a fixed instant of time 6.
Definition 2.1. The map 1,(t., t*, -): 28" — 2% given by

L = U X G M (H))
ve¥ reln,.r'}

will be called the stable absorption operator m(ts; t*, H)(ty < t« < t* < 0),(H C R™) in the problem of
approaching the target M up to time 6.

Definition 2.2. A closed set W C D is called a minimax u-stable bridge in the problem of approaching
M up to time 0 if
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Wec M, W, cn(.;r,W,)

for any t.,t* (tg <t. < t* <9).

Here W, = {xe R™ (t,x) € W}.

Let {F): D — 2"} (i = 1, 2) be two families of maps corresponding to ¥® (i = 1, 2) and satisfying
conditions A.1-A.3. Each of these families induces its own stable absorption operator ®(t.; t*, H).
It can be shown that the operators are equivalent in the sense that a set W C D which is a minimax
u-stable bridge under one of the operators will be a minimax u-stable bridge under the other
operator.

3. THE APPROXIMATING SYSTEM OF SETS AND ITS PROPERTIES

In addition to A.1-A.3 we shall assume that the family of maps {F,: D — 2%"} corresponding to ¥
satisfies the following condition .
A.4. There is a number A = A(L) € [0, =) such that

d(Fy(1,x"), Fy(t,x.)<Alx" -x 1, ye¥

for any (¢, x«) and (¢, x*) in D.

We denote by W° the maximal minimax u-stable bridge. We know that W? is the set of positional
absorption in the problem under consideration.

We will define an approximating system of sets (ASS) with a view to an approximate computation
of WP, The notion of an ASS arises when the time-continuous scheme of u-stability is replaced by a
discrete one, namely, when a division I" = (fg, ty, . . . , £y = 0} is introduced and the domains X, (¢*; -,
x.) in Definition 2.2 are replaced by x. + (£* —#+) Fy(ts, x+).

Definition 3.1. By the approximating operator of stable absorption
a®(t; 0 H)(€=0, ty<t,<t"<0, HcR™)
in the problem of approaching M up to time 6 we shall mean the map a® (¢-; t*, -): 28" — 2%" given by

at;tt =N U X', M (H))
ye¥ rein,r’)

Here
X, (i t" ME(HD)) ={x, e R™: M{ (H) " X, (8 1,,x.) # 0}

X (it x)=x, +(t-t)F,(t,x,) for te[n,r).

Mf(H)={M°’ el
M, OH, 1=t
M, being the e-neighbourhood of M in R™.

We will say that a real-valued function n1(A)(A = 0) satisfies condition B if it is non-negative, decreases
monotonically to zero as A { 0, and lim,yo N(A)/A = 0.

Let T, = {t5, 1, . . . , tnw) = 0} be a given division of the interval [¢), 6] and let n(A) be a function
satisfying condition B.

We put

M°(A)=0, o(A)= A" (1+K)AXA=0), A;=t,, -1

A" = max A
0=i<N(n)-1

€ =€,(M))=0(A,_)+NA;_D+A+AA; g,
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) =&, =0(A, ) +(1+AA;)e), (i=0,1,....N(n)-1)
€y =€3=0

Definition 3.2. A system {,‘I'i",‘.("): t; € I,} given by the recursion relations
W =M

NNG@y T ENm M
(i =N@n)-1,N@n)-2,...,0)will be called an 1-ASS.
Let {I',} be an arbitrary sequence of divisions I',, of [fg, 0} such that lim,,_,.. A® =0,

I(n) _ . (n)
Wr}" =a* {5 4,0, W W,,)

Definition 3.3. We denote by nWO the set of all points (t., x«) in D such that a sequence

{4 x, 2, =1,(8.) €11,,8), x, € ,,W,f,"’, lim x, = x,}
n—pon

exists. Here

min ¢, <9
t,,(t.)= (€T, 4>0)

tes t=0

It has been shown that, subject to conditions similar to A.1-A.4, the sets W and ,W? are the same
for any function 1 = n(-) satisfying condition B. In a similar way it can be shown that w? and nWO
are identical for any function | = n(-) satisfying condition B, provided that conditions A.1-A.4 are
satisfied.

The ASSs {,,OW,,.(") :t;e I} and {“ﬁ’,f") :t; € I} corresponding to a division I',, and functions n’=
1°%) and n = n(-) satisfy the inclusions ;

p(n) v(n)
T‘OW,,, c W el

However, the 11-ASS {nﬁ’t;(") : t; € T,,} introduced above is unsuitable for computations, since it is
necessary to compute a non-denumerable number of sets

XSt My (W), telng,]

in order to determine the set ,,W,,.(") in R™. R

We will consider the problem of constructing systems of set {nOWt.-(") :t; € T} that can be computed
efficiently enough and approximate W, that is, give W° in the limit as 7 — oo A® - 0).

It has been shown that, for certain restrictions on the structure of M, one can introduce a system of
sets {W,] : ¢; € T,,} that satisfy the relations

noﬁ/,}"’ cWM e W™ (i=0,1,...,N®)) (3.1)

and can be computed fairly easily, at least for problems in the plane. Namely, we consider the case
when M can be represented as a union of spheres whose radii are bounded above by some R* € (0, ).
The system of sets {W,” : ¢; € I} is given by the recursion relations

Wim = M )

e~ UENmY? 5

i) — Y-l(s. 7(n)
W " - vn\llxv (ti’ ti+| * m,-,,,l v ME,'.H
€

i=Nn)-1,...,1,0).
Here €;,1 = €41((M()), n(A) = (KYR*)AZ, A = 0. From (3.1) and the equality

0 . = . =
Wo= lim {novv,i‘"’:z,.er,,}= Jim (W1, €T}
A™ 50 AM 0
it follows that
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W= lim (W":4,€T,)

Am 0
where the limit is understood in the same sense as

0_ 7
W= lim {,lW,,f"):t,-el",,}
A" oo

i.e. in the sense of Definition 3.3.

In the case considered earlier W, ®) js the set of program absorption of the target W, oYUM, at
time ;1 in the local (in time) apprommatlon problem of approach in the time interval [t t,+1]
Approxlmatlon consists in that instead of the attainability domains X (#;,1: #;, x[#;]) their linear (in time)
approximations X y{li+1; 4 x| ;) are considered. A similar approach to the construction of a system
of sets approximat ing the resolvent set was applied in [6] when constructmg a pursuit game. However,
in the case when M is an arbitrary compact set, this method of approximating the resolving set
unsuitable.

We oonsnder the case when M is an arbitrary compact set in R™. In this case to define the system of
sets {W ;e } we fix a division I, and an interval [¢;, ¢;, ] of the division I,,.

Assummg that ¥, 4 ®) has already been constructed, we carry out a division I, of [t;, ;41] by instants

oftime ) =, 1), ..., "™ = ¢, such that the diameter A/ M of 1" satisfies the equalities
A&“’::{‘*‘-rf:%. k=0,1,...,N(n)-1 (.2)
N(n) being the number of intervals of T,
The inequalities
—~ 1. A
AU =WE~ oy Nmy-1
0-1
follow from (3.2).
We introduce the function
Ka™
n=n(a)= A A=0 3.3
©—1) (3.3)

andtheset‘l’xl“)—{(wt("))we‘l’k 0,1,...,N(#n)-1}.
Let us put

v _ | X Gt M) for ye¥, k=0,1,...,N(n)-1
fi Xt W UM, ) for ye¥, k=N(n)
and define the system of sets { W,_("): t; € T,,} by the recursion relations
Wm = W = /ASh 34
e = Mo W VQ‘I’ 0‘l:<L)J(n)—l fi G4

i=Nn)-1,...,1,0.

Theorem 3.1. The system of sets {W,l.("): t; € T} given by (3.4) satisfies (3.1) with 1y(-) given by (3.3).

Proof. Assuming that W,'.(") are given by (3.4), we shall prove that

0
Pl (ti; tiars W(n)) c w(n) c g+l (t tivls ‘Vr(:,l, ) (3.5)
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Suppose that x[t;] ae?“(ti; Lisls Wt;f«';))- Then by the definition of ae?"l(ti; Livt, W,‘.S"l)) we find that for
any y € W at least one of the two relations

Xy (i3t X[ DO »if,fy 20, X,@{1,x6)N My #0 (3.6)

is satisfied for some f € [t tinl-
We consider the case when the second condition in (3.6) is satisfied for x{ 1; ] Assume that [t, gk is
the interval of I}, containing . By the second condition in (3.6) there is a vector fyv € Fy(t; x{t;]) such that

g1+ -1)f € My (3.7)

Since x[t;] + (t - £;)f,, satisfies (3.7)

AL+ =0y =Gl E =R =Dy My g ©

€y +K(FH ) EM o enam (3:8)
It can be seen that €7,; + N(A) < €41 = g41((-)) for any i (0 < i < N(n) - 1). It follows from (3.8)

and the last inequality thatx[t,] + (t"+1 - :)fv € M, ie. X‘,(t, st X[6]) O Mg, = @ (k =k + 1)
Consequently, if x[t;] € a -+1(t,, Lo, W ,m) then for any y € ¥ at least one of the two relations

At e X! (4 6, W), 2] e X (e tf M, )

holds forsome k (0 <k < N(n))
1t follows that if x[t;] € a -+l(t,, v, W
On the other hand, W(',?C asii(t; by,

been proved.
Now we shall prove that

) thenxft] € W®.
) ) by the definition of W(") Inclusions (3.5) have therefore

|+1

‘H-l

(n) (n) (n)
W'N(n) 1 < W‘N( -1 < ‘lW'N(n) 1 (3'9)

Indeed, using the relations

W('l) = w('l) W(n)

n° " N e < 1 Wiy
and (3.5), we obtain

n) ef . e (n)
) @™ (-1 Ennys Wiy ) € W,

1 (n) N(n)
A =a (ENeny-15 tNGny» oWr,.,(, IN(m-1

EN(n) . EN) (n w(n
ca™ (IN(n)—I’tN(n)’ :,,,( ))ca " (N (r)-15 ENGn)» anN( D= Wi

Inclusions (3.9) have thus been established.
Now we shall prove that

0w<"> cW® o W (3.10)

IN(n-2) IN(n)-2 N INm-2°

Indeed, by (3.5) and (3.9) we obtain

(1] Q A
pn)  _ EN@m- . i(n) EN(m)-1 . (n)
" W'N(n)—z =a (Enimy-25 INGy-1» ! W'N(n)—l )ca (Enem-25 tNem-10 W‘N(n)-n =
(n) EN(n)-1 . T — ENm-1 . Tn) =
< me 2 ST N2 tvmy-1 Wiy, ) S8 (neny=25 INy-10 Wiyt ) =
— i7(n)
TIW'N(n)—z

Inclusions (3.10) have been verified.
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Fig. 1.

In a similar manner, by a recursive argument relations (3.1) can also be proved fori = N(n) -3,...,
1, 0 in the case under consideration (for an arbitrary compact set M). .
Note that if ¥ is a finite set, i.e. it has the form ¥ = {y*: a = 1, 2, ..., p}, then the sets W(;? are

given by

W= U Wk Wk WY (3.11)
Isa=sp O<k=N(n)-1

We can see from (3.1) that in this case one must compute p - N(n) sets W,l.“"‘ in order to compute ﬁ’(;?.

4. APPROXIMATE COMPUTATION OF Wy IN THE PROBLEM
OF CONTROLLING A PLANE PENDULUM MOVING
IN A VISCOUS MEDIUM

A number of studies [2, 16] have been devoted to the computational aspects of the solution of approach problems
in various formulations. The most detailed computational scheme has been developed for solving approach problems
in the case of linear controlled systems (1.1) [11, 16]. An algorithm for the approximate computation of the set of
positional absorption W in the problem of approaching the target at a fixed instant of time has been presentedt
in [2] in the case when (1.1) has the form (2.1). The basic elements of this algorithm are used to solve the problem
considered here.

Consider a plane pendulum attached to a suspension point by a flexible unstretchable thread. The pendulum is
controlled by an additional bounded force applied to it. The pendulum moves in a viscous medium, the parameters
of which may vary with time. However, the exact value of the viscosity of the medium is unknown at any instant.
Only the limits within which the viscosity can vary are known.

We assume that the equation of motion of the controlled plane pendulum has the form

X =X, Xy =-0.15x,v -10.15sinx; +u (4.1)

Here the time interval in which the motion of pendulum is considered is [0. 2.25], x = (x;, x;) is the phase space
vector of system (4.1), u is the controlling moment such that u € [-10, 10}, and v is the damping factor of the
medium such that v € [0, 1].

The following problem can be formulated for system (4.1): it is required to damp the pendulum oscillations within
a time interval not exceeding 8 = 2.25 or, which is the same, bring the phase vector x = (x;, x;) of the system into
the target set M consisting of one point (0, 0) no later than at the fixed time 6 = 2.25,

Note that, in addition to the equilibrium position (0, 0) system (4.1) has (in view of its periodicity) an infinite
number of equilibria (2km, 0), where k is a natural number. Because of this the set of points (2kx, 0) (k being a
natural number) should be chosen as M. However, it is clear that for a target consisting of an infinite number of
points it is impossible to construct the set of positional absorption using a computer. For this reason, we construct

for M consisting of a finite number of pomts, for example, three points (2k1c 0). For M consisting of three
points (-2x, 0) (0, 0), (2, 0) the sets W(t;) in the interval [0. 2.25] are shown in Fig. 1. They are separated from
one another in time by 0.25.

This research was supported financially by the Russian Foundation for Basic Research (93-011-16032)
and the International Science Foundation (NME 000, NME 300).
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