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The problem of control using the feedback principle is cousidered, in which the aim is to ensure that a phase point falls within 
a terminal set no later than a specified time for any noises acting on the system, which are unknown in advance [1]. A method 
for the approximate construction of the set of positional absorption, that is, the set of all initial points for which the problem is 
solvable, is proposed. "I]~e relations defining the appro~mate set of positional absorption are stated. These relations differ from 
those proposed in [2] for the problem of approaching the terminal set at a given time. The results of an appro~nate computation 
of the set of positional absorption in the problem of controlling a pendulum in a viscous medium are presented. The paper touches 
on the topics considered in [1-16]. © 1997 Elsevier Science Ltd. All rights reserved. 

1. F O R M U L A T I O N  OF THE P R O B L E M  

Suppose that a cor~flict-control system is given whose behaviour in a time interval [tg~ 0] (to < 0 < oo) 
is described by the equation 

i--f(t,x,u,v), X[tol=xo, ueP, v¢Q (1.1) 

Here x is the m-dimensional phase vector of the system, u is the control function, v is the noise, and P 
and Q are compact sets in R J' and R q, respectively. 

It is assumed that (1.1) satisfies the standard conditions of game theory (see [1]). We consider the 
construction of the set of positional absorption W ° consisting of all initial positions (t., x . )  ~ [to, 0] × 
R m for which there is a positional strategy U(t ,x)  ensuring that x(x) ~ M for all x ¢ [t. a 0] and for any 
v(t) (the precise formulation of this problem is presented in [1]). The construction of W ~ in the problem 
under consideration is more difficult than the construction of the set of positional absorption in the 
problem in which the condition x(0) ~ M is to be satisfied. 

The problem of approaching the target up to a fixed instant of time was studied in [1, 4-fl], where, in particular, 
various constructions were considered suitable for analysing the general properties of W ~. Studies with a view to 
computations include a justification of the approximation of the differential equation by a difference equation.~ 
Constructions related to an approximate computation of W ° were considered in [9-11]. 

Below we will study problems related to the computational aspects of the construction of W °. In Section 
2 we define the stablle absorption operator. The construction of the stable ab~rption operator is a quite 
general scheme serving as a basis for finding the positional absorption set W". In Section 3 we present 
conditions under which the discrete approximation of W ° converges to W" as the discretization 
step tends to zero. We will present a relation which can be used to develop an algorithm for the approx- 
imate computation of W ° for some classes of controlled systems in the plane. Examples are given in 
Section 4. 

2. T H E  S T A B L E  A B S O R P T I O N  O P E R A T O R  

We assume that all the objects (stable bridges, motions or neighbourhoods of the target M) considered 
below are contained in a sufficiently large compact domain D C [to, O] x R m. 

We will consider ltbe definition of a u-stable bridge, that is, the set of positions in which the motion 
can be preserved by a suitable choice of the control function u. The function (Harniltonian) 
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H(t,x,l) = max min ( l , f ( t ,x ,u ,o)) ,  l ~ R m 
ucP v eQ 

of system (L1) is hl this definition. H,~re (l,]) denotes the scalar product of the vectors I andf. 
Let G = i f  ¢ Rm: I [ f I [ ~< K <' **} be a step such that F(t, x) C G for any (t, x) ¢ D. Here I I f I I 

= 

Here a set ~ of,elements ¥ is given along with,a map {Fv: D ~ 2 ~ } corresponding to ~F and satisfying 
the following e0ndi~ions. 

A.1. For any (t, x, ¥)  ~ D × ~F the set Fv(t, x) is convex, closed and satisfies Fv(t, x) C G. 
A.2. For any (t, x, l) e D × S 

min h~ ,t x,(1) = H(t,x,l). 
¥ ¢ W  W ~ "  ' 

A.3. There is a function {o*(8) ({o*(8) $ 0 as 5 $ 0) such that 

d(F,/(t*,x*), F,/( t . ,x .))~ c0*(I t* - t . l  +llx* - x .  II), 

for any (t., x.) and (t*, x*) from D and any D, ¥ ~ ~F. Here h~(l) = supf~F (/, f~ for any F C R m, S = 
{l e Rm: I I l I I = 1} and d(F*, F.) is the Hausdorff distance between sets F* and F. in R n. 

As examples of families of maps satisfying conditions A.1-A.3 we consider the families {Fv(.): ~.) ~ V}- and 
{Gt: l ¢ S} [12-15], where 

Gl(t,x)= lf e G: ( l,f) <~ H(t,x,l)}, Fvt.} =Eo{f(t,x,u,v (u)): u c P}, 

co{f} is the closed convex hull of {f) and Vis the set of all functions 17(.) P --~ Q. 

Note that for some classes of controlled systems, in particular, for systems with right-hand side of 
the form 

f ( t ,x ,u,u ) = {p(t,x) + B(t,x)u + C(t,x)o (2.1) 

and with P and Q being polyhedra with a finite number of vertices, one can introduce a family of maps 
satisfying A.1-A.3 such that ~F is a finite set. This enables approximate coustru~tjons of W" to be realized 
at least for second-order systems. 

Assuming H C R m, we introduce the following notation: Xv(t*; t., x.) is the set of points x* ~ R m 
reached at t e [t., t*] by a sollation x(-) = (x(x)t. <~ x <- t*, x(t.) = x. of the differential inclusion i 
Fv(t, ) 

M, t¢( t . , t*)  
Mr(H) = M u H ,  t=t"  

xvl(t.; t, Mt(H)) = (x. ¢ Rm: Xv( t* , t . , x . )n  Mr(H) ;e 0} 

We will give a definition of the stable absorption operator in the problem of approaching the target 
M up to a fixed instant of time 0. 

Definition 2.1. The map "q(t., t*, .): 2 Rm ---) 2 Rm given by 

- |  . * l t ( t . ; t ' ,H)= [7 U .  xv  (t . , t  ,Mr(H)) 
¥~W t~[t. , t  ] 

will be called the stable absorption operator x(t,; t*,/-/)(to ~< t. < t* ~< 0) ,(H C R 'n) in the problem of 
approaching the target M up to time 0. 

Definition 2.2. A closed set W C D is called a mird'max u-stable bridge in the problem of approaching 
M up to time 0 if 
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WocM, Wt c ~ ( t . ; t * , W , )  

for any t., t* (to ~< t. < t* ~< 0). 
Here  Wt = {x ~i 1 ~ :  (t, x )  ~ W}.  
Let {~3:  D --, 2 t~} (i = 1, 2) be two families of maps corresponding to ~p(0 (i = 1, 2) and satisfying 

conditions A.1-A.3. Each of  these families induces its own stable absorption operator g(0(t.; t*, H) .  

It can be shown that the operators are equivalent in the sense that a set W C D which is a minimax 
u-stable bridge under one of  the operators will be a minimax u-stable bridge under the other 

operator. 

3. T H E  A P P R O X I M A T I N G  S Y S T E M  OF SETS A N D  ITS P R O P E R T I E S  

In addition to tL1-A.3 we shall assume that the family of  maps {Fv: D --* 2 n=} corresponding to ~P 
satisfies the following condition.  

A.4. There is a number ~, = Z(L) ~ [0, oo) such that 

d(Fv(t,x*), Fv(t,x,))~llx*-x, ll, ~ 

for any (t, x.) and (t, x*) in D. 
We denote by PF ° the maximal minimax u-stable bridge. We know that W ° is the set of positional 

absorption in the problem under consideration. 
We will define an approximating system of sets (ASS) with a view to an approximate computation 

of 14a. The notion of an ASS arises when the time-continuous scheme of u-stability is replaced by a 
discrete one, namely, when a division F = (to, tl .... , fly = 0} is introduced and the domainsXv(t*; t., 
x.) in Definition 2.2 are replaced byx. + (t* - t.) Fv(t., x.). 

Defini t ion 3.1. By the approximating operator of stable absorption 

a~(t.;t*,H)(~>-O, to~t.<t* ~O , HcR m) 

in the problem of approaching M up to time 0 we shall mean the map a e (t.; t*, .): 2 Rm --> 2 ~ given by 

ae(t.;t*,H) = N O f(wl(t.;t*,m~(H)) 
¥ ~ P  t E[t.,t*J 

Here  

)f~l (t.; t*, M~(H)) = (x. ~ Rm: M~(H)n J~v (t; t.,x.) ;~ 0} 

~v(t; t.,x.) = x, +(t- t.)Fv(t.,x.) 

M~(H)=IM~, t~[t.,t*) 
[M~uH, t=t* 

for t ~ [ t , , t * ] .  

M e being the e-neighbourhood of  M in R m. 
We will say that a real-valued function xI(A)(A I> 0) satisfies condition B flit is non-negative, decreases 

monotonically to zero as A ,[, 0, and hmA~0 q(A)/A = 0. 
Let Fn = (to, tl . . . .  , t~v(,,) = 0} be a given division of  the interval [to, 0] and let xI(A) be a function 

satisfying condition B. 
We put 

n°(A)--0 ,  o~(A)=Ao~*((I+K)A)(A>~ 0), A i =ti+ I - t  i 

A (n) = max A i 
0~ i~N(n) - I  

e~ = ~i 01 ( ' ) )  = co(Ai-1 ) + 'rl(Ai_, ) + (I + ~Ai_ l )~:;-l 
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~o = ei(¢lO(. )) = o,KAI_ I ) + (1 + ;LAI_ I )e°l  (i = O, I ..... N(n)  - 1) 

% =0 

Definition 3.2. A system {~14r,~"): ti ~ Fn} given by the recursion relations 

_ . #:,))  

(i = N(n)  - 1, N(n)  - 2 . . . . .  0) will be called an TI-ASS. 
Let  {In}  be an arbitrary sequence of  divisions r~ of [to, o} such that limn__~. A (~) = 0. 

Definition 3.3. We denote by ~W ° the set of all points (t., x.) in D such that a sequence 

~(") lira x n = x.} { ( t ~ . x , ~ t ,  = t , ( t . ) E [ t o . O ] .  x ,  ~ ~ , . .  

exists. Here  

( min t i, t < 0 
t , ( t . )  = ~(,,,r,. ,,>,.) 

i t . ,  t = O  

It has been shown that, subject to conditions similar to A.1-A.4, the sets W ° and qW ° are the same 
for any function 11 = TI(.) satisfying condition B. In a similar way it can be shown that W ° and nW ° 
are identical for any function 11 = TI(.) satisfying condition B, provided that conditions A.1-A.4 are 
satisfied. 

The ASSs {n01~t~ n) : t i E 1" n} and {nl~t~ n) : t i E r n} corresponding to a division F~ and functions 11 ° = 
1]°(.) and 1] = 1](-) satisfy the inclusions 

However, the TI-ASS (n~zt! n) : ti ~ In}  introduced above is unsuitable for computations, since it is 
necessary to compute a non-'denumerable number of sets 

)(~/l(t/, t,M~i+l ( nCYtl~))), t ~[ti,ti+ 1 ] 

in order to determine the set ~l~t[ n) in R m. 
We will consider the problem of constructing systems of  set (~ol~:t! n) : ti ~ rn} that can be computed 

efficiently enough and approximate W °, that is, give ~ in the limit i s  n --* = (A (n) --> 0). 
It has been shown that, for certain restrictions on the structure of  M, one can introduce a system of 

sets {l~'t n : ti ~ rn} that satisfy the relations 

no~l ')  c::: l~t~' c:: n~l  ~, ( i=0,1  ..... N(n)) (3.1) 

and can be computed fairly easily, at least for problems in the plane. Namely, we consider the case 
when M can be represented as a union of  spheres whose radii are bounded above by some R* ~ (0, oo). 
The system of sets {Wt~' : ti E F,,} is given by the recursion relations 

,#(.) = Me#(.~, t~ = ti+1 u Mei+1 ) 

(i = N ( n ) -  1, . . . .  1, 0). 
Here ~/+1 = ~/+l((Tl(')), TI(A) = (K2/R*)A 2, A ~> 0. From (3.1) and the equality 

W ° =  lim { l~ . ( " ) ' t /~L}=  / i ra  { ~ n ) : t i ~ F n }  
n-.), ,- n O ti " 

,x(,o ~ o  ~(,o._,,o 

it follows that 
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W ° lim ^ c.). F. } = Iw, I 
At"!-,0 

where the limit is 'understood in the same sense as 

= ~ " ) ' ,  r ' . }  nw ° lim {n'-ti "-, ¢ 

i.e. in the sense of Definition 3.3. 
In the ease con.,;idered earlier ff'tj (n) is the set of program absorption of the target. . ff',~+~ U Moq+~ at 

time ti+l in  the h~:al (in time) approximation problem of approach in the tune mterval [ti,/i+1]. 
Approximation ~nsists in that instead of the attainability domainsXv(ti+l: ti, x[ti]) their linear (in time) 
approximations X~( t i+ l ;  ti, x l ti l) are considered. A similar approach to the construction of a system 
of sets approximating the resolvent set was applied in [6] when constructing a pursuit game. However, 
in the ease when M is an arbitrary compact set, this method of approximating the resolving set W ° in 
unsuitable. 

We consider the: case when M is an arbitrary compact set in R m. In this ease to define the system of 
sets {[~ti (n) ." t i E F n} we fiX a division F,, and an interval [ti, ti+l] of the division F,. 

Assuming that l~'t~ (n) has already been constructed, we carry out a division Fn (i) of [ti, t i+d by instants 
of time t o = ti, t] . . . . .  t/v(n) = ti+l such that the diameter Ai (n) of Fn (i) satisfies the equalities 

A¢:)=tik+1-tik=. ti+l-ti k=0,1 ..... N(n)- I (3.2) 
N(n) ' 

N ( n )  being the number of intervals of In. 
The inequalitie,,; 

A~ .n) ~< (ti+l-ti)A¢n), i=0,1  ..... N (n ) - I  
0 - t0  

follow from (3.2). 
We introduce the function 

KA¢ n) 
A, A ~ 0 (3.3) 11 = ~(A) = ( 0 - t  0) 

and the set ~F x F~! i) = {(% ti(k)): ¥ ~ ~F, k = O, 1 , . . . ,  N ( n )  - 1}. 
Let us put 

~X~1(ti,t:,M~i+l) for wstF, k=O,! ..... N(n)-I 
Wt~ "k = --I ^(n) [X~t(ti,ti+l,Wti+l u M t m  ) for ¥ ¢ t F ,  k = ' N ( n )  

and define the system of sets {l~t~(n): ti ~ Fn} by the recursion relations 

I~. C"' I~:"' = n U Wt~ 'k (3.4) tN(n) :m M~tccn ) , ti 
¥~F O~k~N(n)-I 

i = N ( n )  - 1 . . . . .  1, 0. 

T h e o r e m  3.1. The system of sets {ff't~(n): ti ~ In} given by (3.4) satisfies (3.1) with 11(.) given by (3.3). 

Proof. Assuming that l~t~ (') are given by (3.4), we shall prove that 

a e °+ t ( t i ; t i+ , , ITgt~n+ ,) ) c l~t~ n , c a e'+ ' ( t i ; t i+ , , l~'t~ n+ , , ) (3.5) 
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o I~'ti(1 )) we find that for (n)~ Then by the definition ofag~+~(ti; ti+l, Suppose thatx[ti] ~ ae°+~(ti; ti+~, ,,  t~+t ~. 
any ¥ ~ ~F at least one of the two relations 

'X~v(ti+,;ti,xtti])r~ l~:,' 0 0 ,  ff~v(t;ti,xtti])raMto÷, * 0  (3.6) 

is satisfied for some t" ~ [t/, t i + l ] .  
We consider the case when the second condition in (3.6) is satisfied forx[ ti ]. Assume that [t/k, t/k +~] is 

the interval of F,, containing ~'. By the second condition in (3.6) there is a vectorfv ~ Fv(ti, x[ti]) such that 

Since x[ti] + (t - ti)fv satisfies (3.7) 

x[ ti ] + (? - ti ) f~v ~ Mgo+, (3.7) 

x [ t i ] + ( t f i  + l - t l ) f v = ( x [ t i ] + ( t - t i ) f v ) + ( t f + ' - t ) f ¥ ¢ M  o ~+, . c 
(e i+ l+K(t  i - t ) )  

C M 0 k'*l k C M(I~/O+I+I](Ai) ) ( 3 . 8 )  
(gi+l+g(ti -ti )) 

I t  can be seen that  0 ~i+1 + TI(Ai) ~< e/+l = ~/+l(Tl(')) for any i (0 <~ i <~ N ( n )  - 1). It follows from (3.8) 

and the last inequal i ty thatx[t i]  + (ti k 1 _ t i ) f v  ~ M~+I ' i.e.Xv(t~k; ti, x[ti]) N Ma+l # O (k = k + 1). 
. E0 ^ 

Consequently, ifx[ti] ~ a ~+l(ti; ti+l, W(~)+I), then for any ¥ ~ ~F at least one of the two relations 

x[ t i ]~  ~ l ( t i ; t i + l , ~ . ( n ) ,  ~ X [ t i ] E  " - I  . k ti+! , ,  X ¥  ( t  i , t i , e¢i+l ) 

holds for some k (0 <<- k <<- N(n) ) .  
• go 17V (n) ~ then  x[ti] ~ ~V(~ ). It follows that i f  x[ti] ¢ a ~+~(ti; ti+l, t~+d, 

On the other hand, l~'(~)C ag~+~(ti; ti+ 1, FV(n)t~+d ~ b,,, the definition of l~r(~ ). Inclusions (3.5) have therefore 

been proved. 
Now we shaft prove that 

Indeed, using the relations 

ff,,(n) c I~. (n) c l~. (n) 
.qO VrlN(n)_l tN(n)-I 1'1 tN(n)-I 

fie(n) l~/(n) C W.(") 
qO "etN(n) "~ "'iN(n) 11 tN(n ) 

and (3.5), we obtain 

~( n ) e ° . . ~o ^ 
W. (n) ~ c  ~ N(n):t " t  l~(n)  C qO tN,~)-, =a N(n)(tN(n)_l,tN(n), vl o tt¢(.)' u ' N(n)-l, N(n)'Wt(N~)) C "'iN(n)_ ' 

t,~ "(n) I = ~ . . (n )  ~(n) )CT. oeN(n)(IN(n)_I.,tN(n), "q" tN(n) /  Q tN(n)-i" C O eN(n) ( /N(n)- I  ; IN(n) ,  IN(n) 

Inclusions (3.9) have thus been established. 
Now we shaft prove that 

u~(.) c I~. (n) c 1~. (n) 
110 evtN(n_2) iN(n)- 2 tl tN(n)-2 • 

Indeed, by (3.5) and (3.9) we obtain 

0 
~(n)  go fie(n) ) c a ~s(~)-t (tN(n)_ 2 ; tN(n)_ I, ~.(n) ) C qO IN(n)-2 : O (n)-I ( tN(n )_2 ,  tN(n)_ I '  qO "'tN(n)_l IN(n)_I 

c  p<n) c a gN'''-'`t - t  ) = • ,iN(n)_ 2 t, N ( n ) - 2 '  N ( n ) - l '  tN(n)_l }C= ( t N ( n ) - 2 ; t N ( n ) - I '  q IN(n)_ I 

= t~,(n) 
1] "" tN(n)_ 2 • 

Inclusions (3.10) have been verified. 

(3.9) 

(3.1o) 
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Fig. 1. 

In a similar mamaer, by a reeursive argument relations (3.1) can also be proved for i = N ( n )  - 3 . . . .  , 
1, 0 in the ease under consideration (for an arbitrary compact set M). 

Note that if ~I' is a finite set, i.e. it has the form W = {¥a: ct = 1, 2 . . . . .  p}, then the sets 1~(~ ) are 
given by 

~(n)ti --_ [7 U w-Ct'tti , ]~¢x.kt~ = Wtya't  
I eget~p 0~kagN(a)-I 

(3.11) 

We can see from (3.1) that in this case one must compute p- N ( n )  sets Wt~ ~ in order  to compute I~'(~ ). 

4. A P P R O X I M A T E  C O M P U T A T I O N  OF W0 IN T H E  P R O B L E M  
OF C O N T R O L L I N G  A P L A N E  P E N D U L U M  M O V I N G  

IN A V I S C O U S  M E D I U M  

A number of studies [2, 16] have been devoted to the computational aspects of the solution of approach problems 
in various formulations. The most detailed computational scheme has been developed for solving approach problems 
in the case of linear controlled sys (1.1) [11, 16]. An algorithm for the approximate computation of the set of W ° in the - terns positional absorption problem of approaching the target at a fixed instant of time has been presentedt 
in [2] in the case when (1.1) has the form (2.1). The basic elements of this algorithm are used to solve the problem 
considered here. 

Consider a plane pendulum attached to a suspension point by a flexible unstretchable thread. The pendulum is 
controlled by an addi~tional bounded force applied to it. The pendulum moves in a viscous medium, the parameters 
of which may vary with time. However, the exact value of the viscosity of the medium is unknown at any instant. 
Only the limits within which the viscosity can vary are known. 

We assume that the equation of motion of the controlled plane pendulum has the form 

Jq = x 2 ,  .k 2 = -0.15x2t, - 10,15sinz I +u (4.1) 

Here the time interval in which the motion of pendulum is considered is [0. 2.25], x = (xl, x2) is the phase space 
vector of system (4.1), u is the controlling moment such that u ¢ [-10, 10], and v is the damping factor of the 
medium such that v ~ [0, 1]. 

The following problem can be formulated for system (4.1): it is required to damp the pendulum oscillations within 
a time interval not exceeding 0 ffi 2.25 or, which is the same, bring the phase vector x = (xb x2) of the system into 
the target set M consisting of one point (0, 0) no later than at the fixed time 0 = 2.25. 

Note that, in addition to the equilibrium position (0, 0) system (4.1) has (in view of its periodicity) an infinite 
number of equilibria (2kx, 0), where k is a natural number. Because of this the set of points (2kx, 0) (k being a 
natural number) should be chosen as M. However, it is clear that for a target consisting of an infinite number of 
i~n~otS it is imposs~le to construct the set of positional absorption using a computer. For this reason, we construct 

r M consisting of a finite number of points, for example, three points (2/or, 0). For M consisting of three 
points (-2~t, 0) (0, 0), (2g, 0) the sets W(ti) in the interval [0. 2.25] are shown in Fig. 1. They are separated from 
one another in time by 0.25. 

This research wa~; supported financially by the Russian Foundation for Basic Research (93-011-16032) 
and the International Science Foundation (NME 000, NME 300). 
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